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Quantum research with optimization

» Maximizing concurrence

> Improving ORBIT for stochastic functions

v

Optimization of variational parameters

\4

Cutting quantum circuits

v

Time-varying control
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Maximizing concurrence

> Entanglement is the amazing (confusing) feature of quantum mechanics
that motivates quantum research
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Maximizing concurrence

> Pairwise concurrence is measured by

G = max{0, v/ A1 — VA2 — VA3 — V/Adb,

where A, are the (descending) eigenvalues of a density matrix relating
particles / and .
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Otten, Larson, Min, Wild, Pelton, Gray. Origins and optimization of entanglement in

plasmonically coupled quantum dots. Physical Review A, 2016
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A 5D problem from Rigetti

S

Variational quantum eigensolver (VQE) methods want to identify the
parameterization of the quantum state |¢) at which E [H(|%))] is
minimized.
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Wild, Shoemaker. Global convergence of radial basis function trust-region algorithms for

derivative-free optimization. SIAM Review, 2013.
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.
Improving ORBIT with Gaussian processes

—e—ORBIT i
—-- ORBIT+GP
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Function evaluations divided by (n+1)

53 stochastic benchmark problems with significant noise.
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.
Improving ORBIT with Gaussian processes

RBIT i
RBIT+GP
40 60 80 100 120
Function evaluations divided by (n+1)

“SKQuant-Opt: Optimizers for noisy intermediate-scale quantum devices”, Lavrijsen, Tudor,

Larson, Sung, Linder, Mueller, McClean, Babbush, Urbanek, lancu, and de Jong, 2019
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.
Quantum approximate optimization algorithm

> In QAOA, the quantum evolution starts in the initial state |+)®".
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Quantum approximate optimization algorithm

> In QAOA, the quantum evolution starts in the initial state |+)®".

» The evolution is then performed by applying two alternating operators
based on the cost Hamiltonian H- and mixing Hamiltonian Hy,

[%(6)) = [¥(B.7))
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Quantum approximate optimization algorithm

> In QAOA, the quantum evolution starts in the initial state |+)".

» The evolution is then performed by applying two alternating operators
based on the cost Hamiltonian H- and mixing Hamiltonian Hy,

[%(6)) = [¥(B.7))

_ efiﬁpHM efi'ypHC . efiﬁlHM efi'ylHC H_>®n )

» pis the number of QAOA “steps.”

» Then the objective function f (i.e., the energy of Hc in the state

[Y(B.7))) is
f(8,v) = — (W(B.v)| He [¥(B.7)) -
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QAOA on graph clustering
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QAOA on graph clustering

APOSMM+BOBYQA

0.129

-1.082

-2.293

-3.503

-4.714

-5.925

-7.136

Larson, Wild. Asynchronously parallel optimization solver for finding multiple minima.

Mathematical Programming Computation, 2018
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QAOA on graph clustering
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Shaydulin, Safro, Larson. Multistart Methods for Quantum Approximate Optimization. 2019

.\ IEEE High Performance Extreme Computing Conference. (Best student paper finalist)
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QAOA on graph clustering

COBYLA
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Highlights the need for specialized optimization methods for quantum
variational algorithms
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Cutting quantum circuits
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Control of time-varying systems

Drift (10 jobs, 128 experiments, 8192 shots)

Zero count

640 768 896 1024 1152 1280
Experiment

Experiment on qubit 0 of an IBM 20-qubit chip obtained on 3/23/19
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